STATISTICAL RESEARCH ETHODS

International inter-university postgraduate interdisciplinary doctoral study ENTREPRENEURSHIP AND INNOVATIVENESS

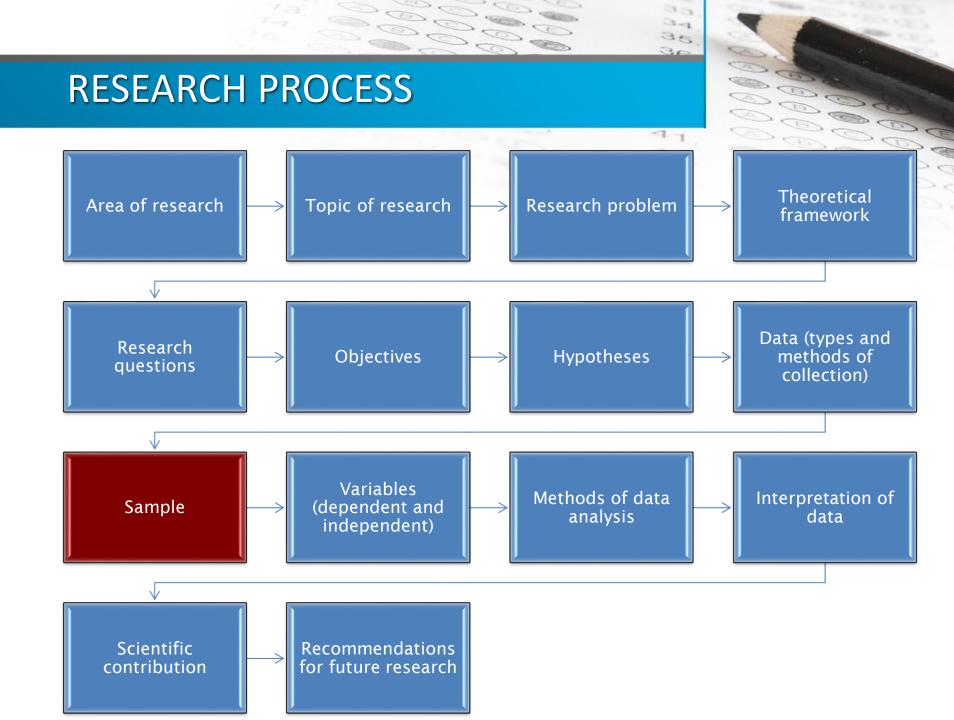
35

36

37

Jasna Horvat, Ph.D. Josipa Mijoč, Ph.D.

) O CE


00

0

7.

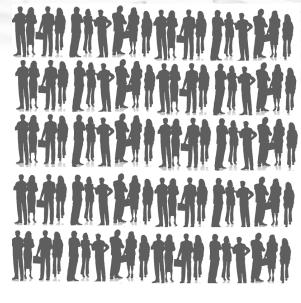
0000

0000 000

Sample and population

- POPULATION
 - Defined group of research subjects that are being sampled

Sample


- All individuals of interest
- Parameter
 - Characteristic of population
- Population size = N
- SAMPLE
 - Subset from whole population
 - calculate a <u>statistic</u>
 - Sample size = n

POPULATION

SAMPLE

3-1

n = 100

 $N = 10\ 000$

THE BIG PICTURE OF STATISTICS Theory Research question / Hypothesis to test Design Research Study Collect Data (measurements, observations)

USING STATISTICS! Depends on our goal:

Describe characteristics organize, summarize, condense data

DESCRIPTIVE STATISTICS

Test hypothesis, Make conclusions, *interpret* data, understand relations

INFERENTIAL STATISTICS

Statistical procedures can be divided into two major categories

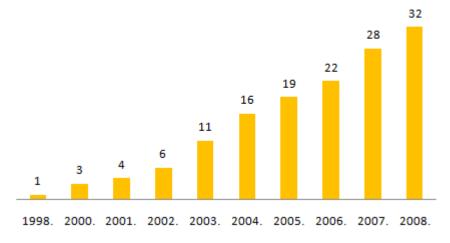
2220

- descriptive statistics
- inferential statistics

DESCRIPTIVE STATISTICS

- descriptive statistics describe the statistical data
- using numerical and graphical methods to the collected data presented in an understandable and clear manner

TEXT


According to HZZ in late October 344,444 people were registered as unemployed, which means that the number of unemployed in 20 days more than 5500. In October 2013, 25,933 people were left out from the unemployment registration, of which 14.776 found job. The unemployment register during the same month, joined 46,594 people, which is three percent more than October 2012.

TABLE

Godina 🌹	▶ 2004	N 2005	D 2004	▶ 2007	▶ 2008	▶ 2009
Prostorna jedinica - županija 🦷	2004	▶ 2005	▶ 2006	- 2007		
ZAGREBAČKA	11.345	11.101	11.031	8.941	8.774	14.207
KRAPINSKO-ZAGORSKA	5.552	5.353	5.049	4.008	4.049	6.669
SISAČKO-MOSLAVAČKA	11.568	11.224	10.925	9.772	10.296	13.200
KARLOVAČKA	8.048	7.404	6.834	6.221	6.158	8.503
VARAŽDINSKA	9.798	8.934	8.372	7.159	6.678	10.689
KOPRIVNIČKO-KRIŽEVAČKA	6.242	5.490	5.541	5.276	4.899	6.933
BJELOVARSKO-BILOGORSKA	9.325	8.847	8.985	8.412	7.923	9.882
PRIMORSKO-GORANSKA	15.229	14.487	15.207	12.971	12.767	17.428
LIČKO-SENJSKA	3.421	2.625	2.877	2.201	2.222	2.703

Ulasci u evidenciju: Prostorna jedinica - županija, Godina - Mjesec

Number of unemployed

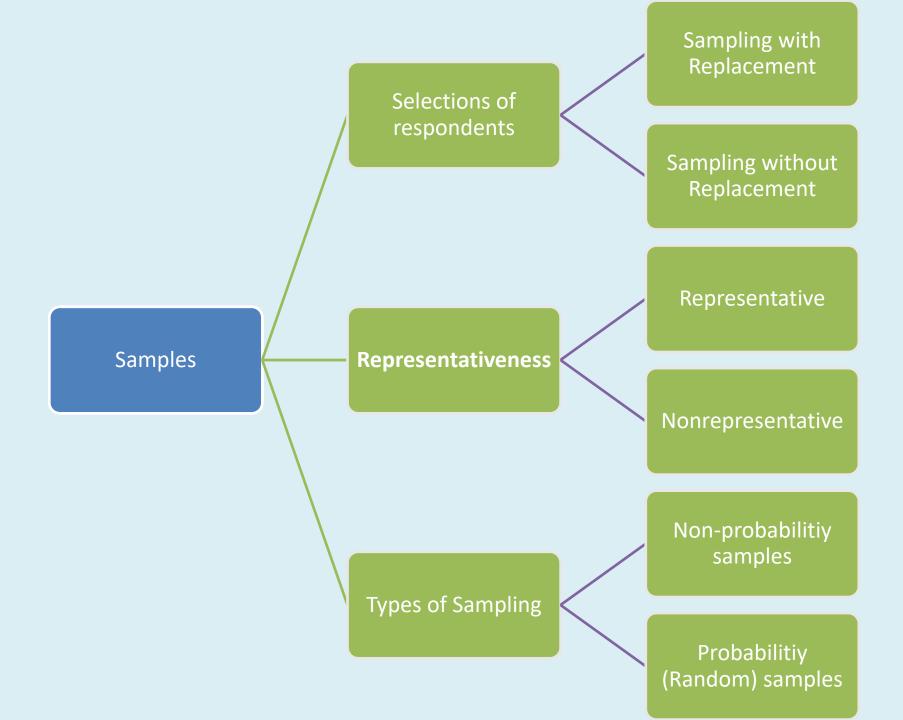
GRAPH

INFERENTIAL STATISTICS

- Inferential statistics make conclusions about the population based on the sample using
 - estimation
 - hypothesis testing
 - determining the relationship between variables
 - predictions about population

Descriptive statistics

- How many women are employed in management positions in Croatian companies?
- How many hours of overtime during one month reach employees of the company?

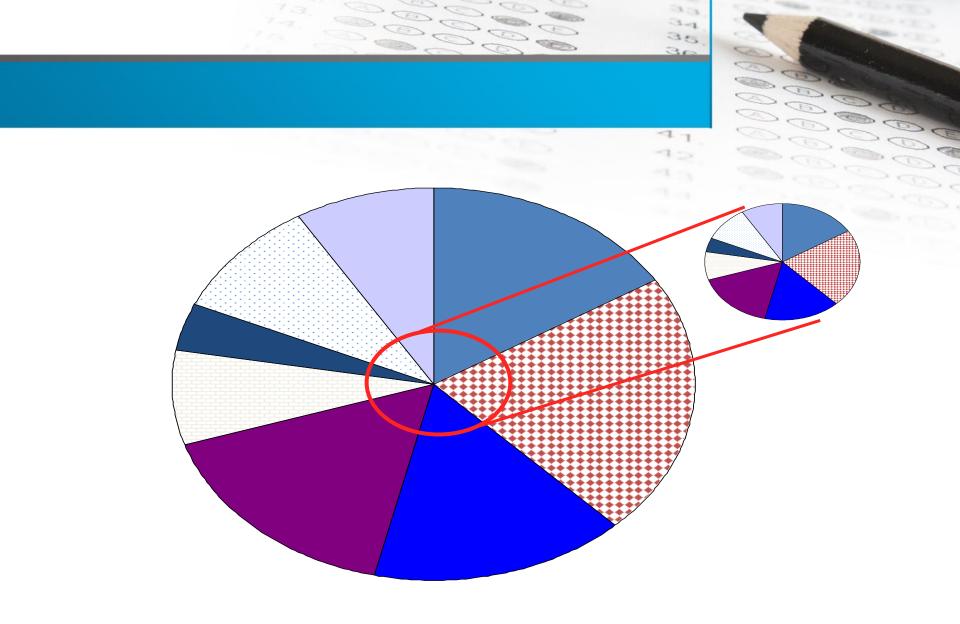

- Inferential statistics
 - Is there a connection
 between gender and
 the decisions on
 starting your own
 business?
 - What factors affect the younger age groups (young people) when deciding on the selection of career times?

Descriptive statistics

30 30

17

- SPSS 🙂
- Tomorrow 😳



Sampling

- the process of selecting units (e.g., people, cases, items or data) from a population of interest so that by studying the sample we may fairly generalize our results back to the population from which they were chosen (Trochim, 2006).
- A precise of the target population is essential and usually done in terms of:
 - Elements
 - person or object which data is sought and about which inferences are to be made
 - (e.g., people, cases, items or data)
 - Sampling units
 - target population element available for selection during the sampling process
 - Sampling frame
 - a representation of the elements of the target population

Representative Sample

- Representative sample is one that:
 - represent the key characteristics of total population
 - so you can generalize to population
 - -thumbnail picture of selected population
 - contains the essential characteristics of the entire population

Types of Sampling

Nonprobability samples Convenience

Quota

Judgment

Snow-ball

Probability (Random) samples Simple Random Sampling

Stratified Random Sampling

Cluster Sampling

Systematic Sampling

Non-probability samples

- The process of selecting a sample from a population without using (statistical) probability theory.
- Not every element of the population has the opportunity for selection in the sample
 - the researcher CANNOT estimate the error caused by not collecting data from all elements/members of the population

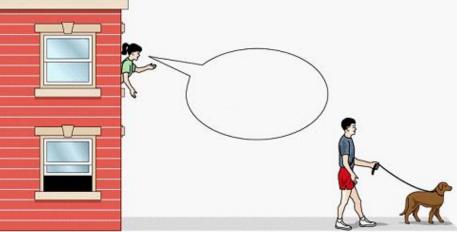
Non-probability samples

- No sampling frame
- Not reliable
- Non-random selection
- More likely to produce a biased sample

-1

- Restricts generalization
- Questionable representativeness

1. Convenience sample


- Selection strategy
 - Select cases based on respondents availability for the study
 - individuals who are easiest to reach
 - "Man on the street"
 - Selecting easily accessible respondents with no randomization
 - Available or accessible clients
 - It is done at the "convenience" of the researcher

1. Convenience sample

- Purpose:
 - Saves time, money and effort; but at the expense of information and credibility.
- Problem: *No* evidence for representativeness

2. Quota samples

- Selection strategy
 - Select a sample that yields the same proportions as the population proportions on easily identified variables
 - e.g. population has 40% women and 60% men, you want your sample to meet that quota
- Represent major characteristics of population by sampling a proportional amount of each

2. Quota samples

- Representative Sample?
 - representative only for the characteristics that are the basis for distinguishing groups of units
 - E.g.
 - Gender
 - Education

2. Quota samples

- Purpose
 - Taking a set number of cases from each subgroup to raise analytic confidence and representativeness
- Problem:
 - How do you pick the characteristics?
 - How do you know their proportion in population?

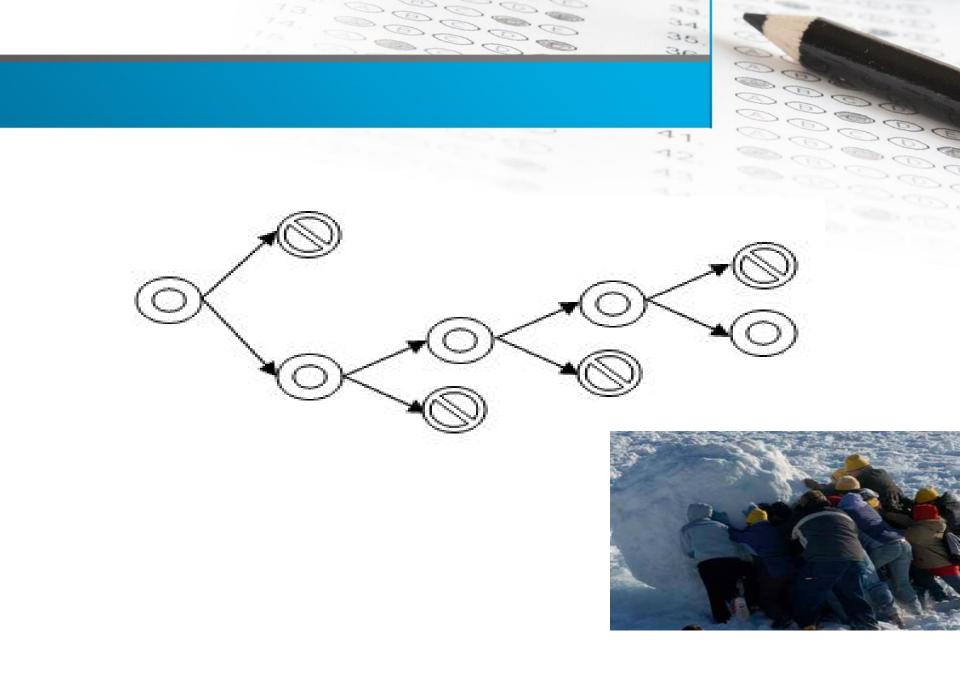
3. Judgment sample (Expert sampling)

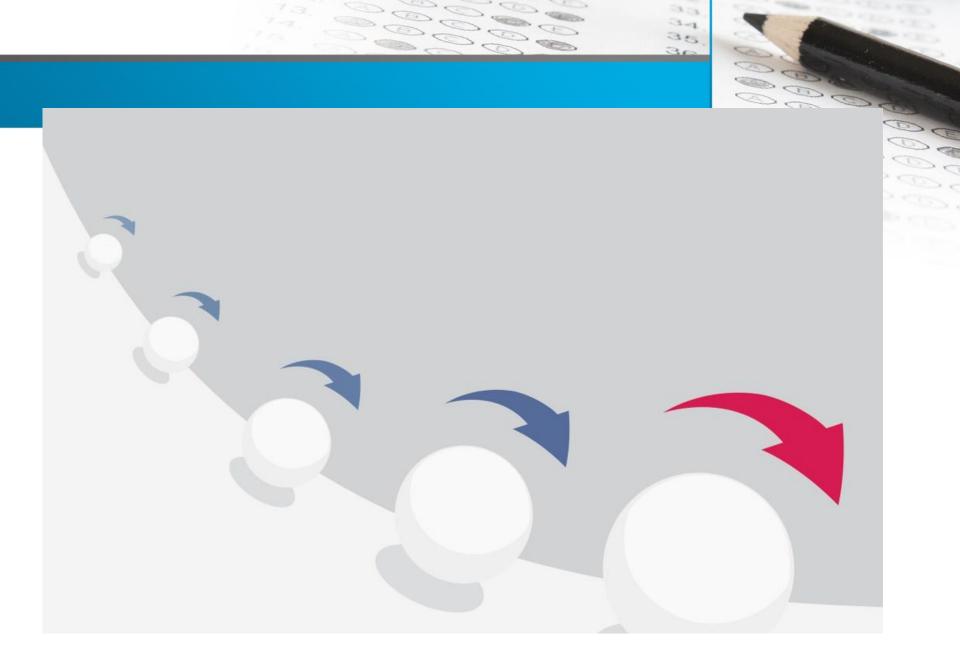
- Selection strategy
 - rely on the judgment of the researcher
 - according to an experienced researcher's belief that they will meet the requirements of study panel of experts make a judgment about the representativeness of your sample
- Advantage
 - expert judgment supports the sampling

3. Judgment sample

- Problem
 - great deal of sampling error since the researcher's judgment may be wrong
 - the "experts" may be wrong
- Example:
 - Specific People
 - Specific cases/organizations
 - Specific events
 - Specific pieces of data

3. Judgment sample




34 35

-1

4. Snow-ball sample

- target population is rare and unique and compiling a complete list of sampling units is a nearly impossible task
 - identify hard-to-reach populations
- Selection strategy
 - One person recommends another, who recommends another, who recommends another, etc.
- rare groups of people tend to form their own unique social circles.

Types of Sampling

Nonprobability samples Convenience

Quota

Judgment

Snow-ball

Probability (Random) samples Simple Random Sampling

Stratified Random Sampling

Cluster Sampling

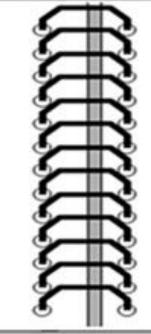
Systematic Sampling

Probability samples

- Everyone in the population has equal opportunity for selection as a subject
- Increases sample's representativeness of the population
- Decreases sampling error and sampling bias
- Provide *unbiased* selection of units in the sample

1. Simple Random Sampling

- All participants have equal chance of being selected
 - Roll dice, flip coin, draw from hat, random number
- Random sampling is the only way to ensure that your sample is truly representative of the target population
- Random selection reduce bias
- Ideal sampling
 - but sometimes not possible


List of buyers

Sample frame

Population (N=48) Sample (n=6)

Mia, T. 1. Petra, K. 2. з. Lovro, S. Dora, H. 4. Ema, I. Andrija, T. б. Nikola, F. 7. Marina, G. 8. Lara, K. 9. 10. Lucija, H. 11. Gea, D. 12. Filip, S. 13. Leon, M. 14. Katarina, P. 15. David, L. 16. Dunja, P. 17. Klara, A. 18. Ivan, F. 19. Livija, V. 20. Ivana, Ž. 21. Ivano, E. 22. Tomislav, T. 23. Patrik, D. 24. Natalija, T.

35

25. Roko, Z. 26. Lana, C. 27. Ana, V. 28. Matija, R. 29. Mislav, K. 30. Ante, L. 31. Maja, K. 32. Marija, D. 33. Zvonimir, P. 34. Lukas, O. 35. Marta, L. 36. Judita, V. 37. David, L. 38. Petra, Č. 39. Vid, M. 40. Mia, F. 41. Karlo, E. 42, Fran, M. 43. Nikola, H 44. Goran, K. 45. Sanja, D. 46. Kristina, O. 47. Luka, V. 48. Jakov, I.

Example: random selection of n numbers from the list of N numbers

• N = 100

n = 15

RANDOM.ORG

Lists & More

Google^{ee} Custom Search Search

Learn Mor

Search RANDOM.ORG

Do you own an iOS or Android device? Check out our app!

Numbers

Random Integer Generator

This form allows you to generate random integers. The randomness comes from atmospheric noise, which for many purposes is better than the pseudo-random number algorithms typically used in computer programs.

Web Tools

30 30

Statistics

Testimonials

Part 1: The Integers

 Generate
 15
 random integers (maximum 10,000).

 Each integer should have a value between
 1
 and
 100
 (both inclusive; limits ±1,000,000,000).

 Format in
 5
 column(s).

Drawings

Part 2: Go!

Be patient! It may take a little while to generate your numbers...

Get Numbers Reset Form

Switch to Advanced Mode

Home	Games	Numbers	Lists & More	Drawings	Web Tools	Statistics	Testimonials	Learn More	Login
R	AN	D	0 M	- <	R	G			n Search Search

Do you own an iOS or Android device? Check out our app!

Random Integer Generator

Here are your random numbers:

11	53	6	25	11
88	94	55	80	13
86	7	37	8	50

Timestamp: 2016-01-28 14:07:37 UTC

Again! Go Back

Note: The numbers are generated left to right, i.e., across columns.

🎔 Follow @RandomOrg	3,372 followers	© 1998-2016 RANDOM.ORG
F Like Share 325k		Valid XHTML 1.0 Transitional Valid CSS Terms and Conditions
G+1 18k		

Example: random selection of 1 number from the list of N numbers

(1)

304 30

47

True Random Number Generator					
Min:	1				
Max:	23				
Generate					
Result:					
20					
	Powered by <u>RANDOM.ORG</u>				

RANDOM.ORG

Web Tools

Drawings

Statistics Testimonials

Learn More Login

Search RANDOM.ORG

Search

True Random Number Service

Do you own an iOS or Android device? Check out our app!

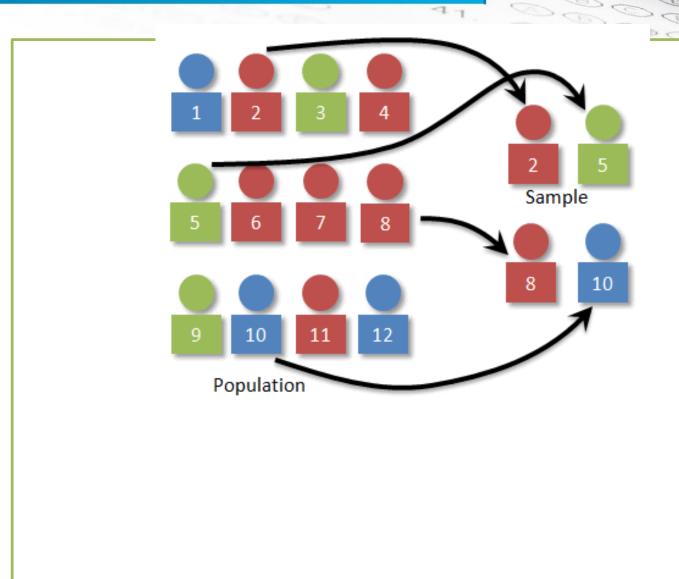
Lottery Quick Pick

This form allows you to quick pick lottery tickets. The randomness comes from atmospheric noise, which for many purposes is better than the pseudo-random number algorithms typically used in computer programs.

Pick 2 v ticket(s) for the lottery in	Croati	3	\sim	
called	Euroja	ckpot 🗸		
which uses	5 ~	numbers, the highest of which is	50	`
and	2 ~	numbers, the highest of which is	10	~
Your chance of matching all numbers v	with this	s combination is 2 in 95,344,200.		

 Pick Tickets
 Reset Form
 Save Settings
 Restore Settings
 Clear Settings

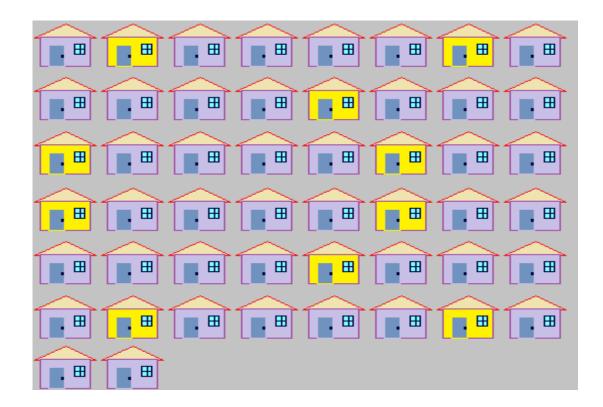
 (settings can be saved in your browser)


If your lottery is not listed, pick any country, then select 'Other Lottery' and fill in the other fields. Yo you want to know more about your chances, you can use Gerry Quinn's Lotto Odds Calculator (RANDOM.ORG's lottery quick pick will help you win.

© 1998-2018 RANDOM.ORG Follow us: Twitter | Facebook | Google Terms and Conditions About Us

1. Simple Random Sampling

- Required list of the entire population
- Researchers use
 - table of random numbers
 - random digit dialing
 - other random selection methods

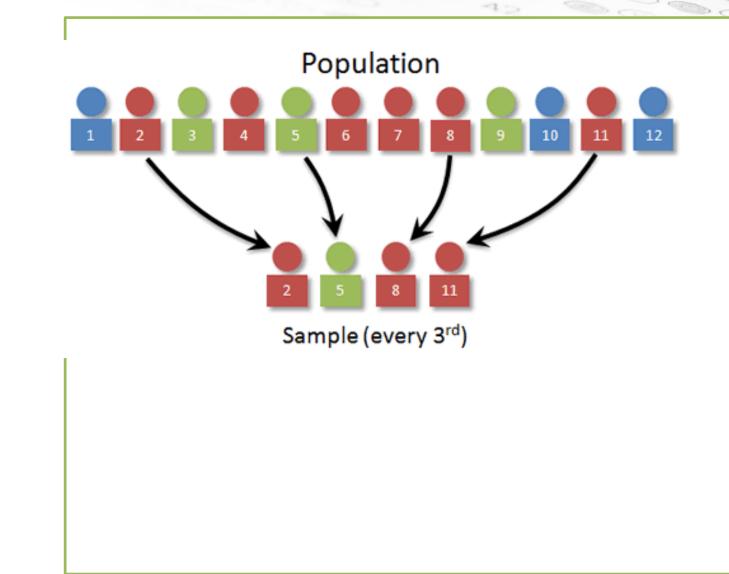

1. Simple Random Sampling

30

- Method that requires selecting samples based on a system of intervals in a numbered population
- Selection strategy
 - random starting point
 - (1) selects a subject at random from the first k names in the sampling frame
 - -then picking each ith
 - (2) selects every ith element listed after that one

e.g. List of household

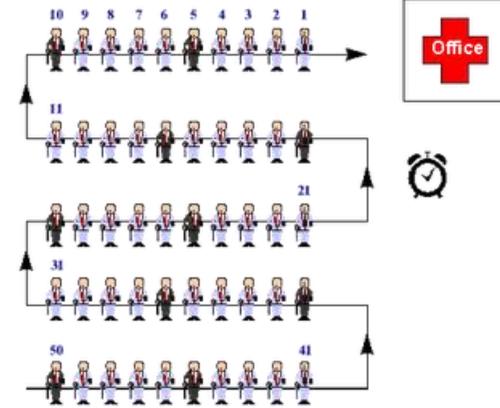
33


20

-7

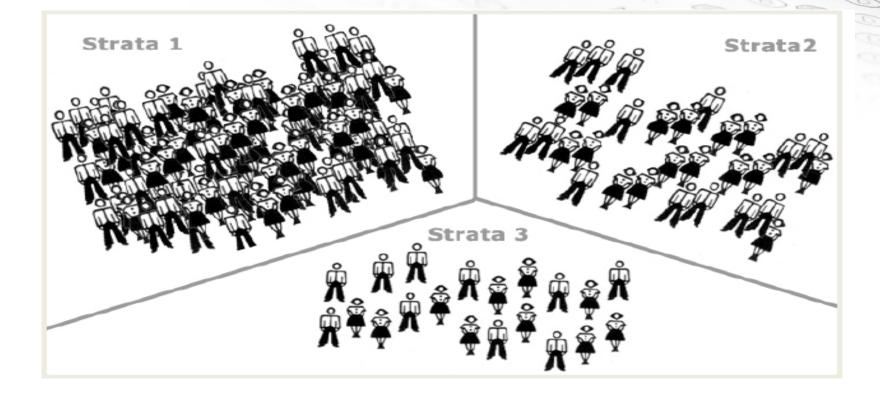
The number k is called the skip number.

- Population size is N, sample size is n, k = N/n
- N= 50, sample size n = 10, 50/10 = 5
- Every fifth participant

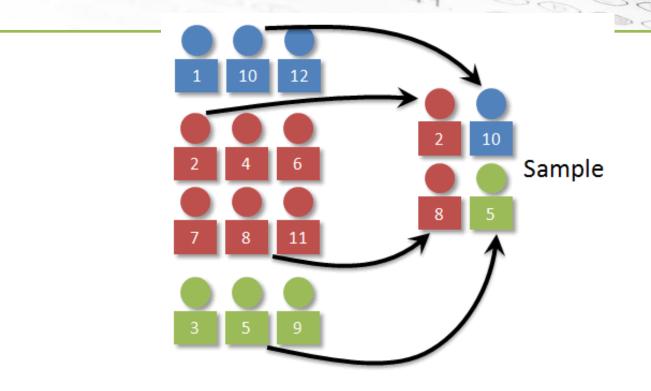

 Systematic random sample elements can be obtained via various means such as customer list, membership list, taxpayer, roll and so on.

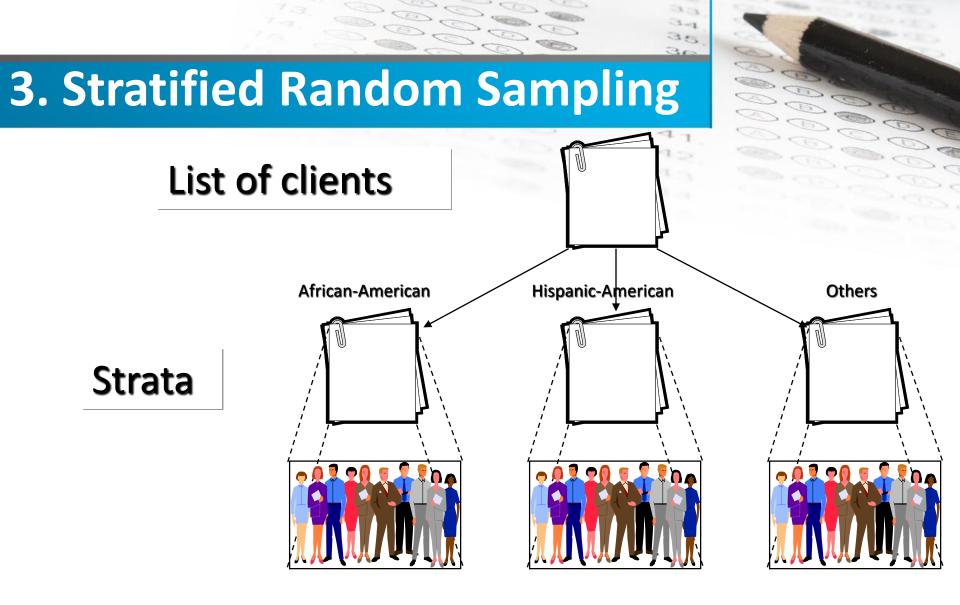
30 30

77


 Every kth member (for example every 10th person) is selected from a list of all population members.

Yearbook List of students in one class




- Selection strategy
 - Two-steps procedure
 - First step the population is divided into mutually exclusive and collectively exhaustive subpopulations, which are called strata
 - population is divided into two or more groups called strata, according to some criterion, example age and subsamples are randomly selected from each strata
 - grouping elements that share certain characteristics
 - Second step randomly chosen population elements

- Used when there is considerable diversity among the population elements.
- The major aim of it is to reduce cost without losing in precision:
 - -proportionate stratified sampling
 - -disproportionate stratified sampling

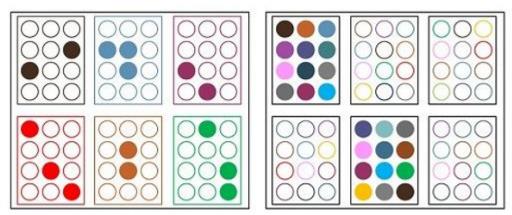
- Potential problem
 - assurance of representativeness
 - comparison between strata
 - understanding of each stratum as well as unique characteristics.
- Variables often used include: age, gender, geographic region, or other socio-demographic characteristics, religion, or maybe type of games used

Random subsamples of n/N

4. Cluster Sampling

- Selection strategy
 - Two-steps procedure
 - (1) Divides the population into groups or clusters
 - The population is divided into subgroups (clusters) like families
 - A number of clusters are selected randomly to represent the total population
 - Population divided into clusters of homogeneous units, usually based on geographical contiguity (but element of each cluster is heterogeneous)
 - The population is divided into mutually exclusive and collectively exhaustive sub-populations
 - (2)A simple random sample is taken of the subgroups and then all members of the cluster selected are surveyed

4. Cluster Sampling


35

4. Cluster Sampling

- Advantages :
 - Cuts down on the cost of preparing a sampling frame
 - Administratively useful, especially when you have a wide geographic area to cover
- Disadvantages:
 - Sampling error is higher for a simple random sample of the same size
 - Problem with representatives

Difference Between Strata and Clusters

- Although strata and clusters are both non-overlapping subsets of the population, they differ in several ways.
- With stratified sampling, the best survey results occur when elements within strata are
 - internally homogeneous
 - However, with cluster sampling, the best results occur when elements within clusters are
 - internally heterogeneous

Stratified Sampling Vs Cluster Sampling

Example

Sample:

Quantitative research: University students of economics were selected for the sample since student sample is very common in testing of self-employment intentions. Students of the graduate study are the target group of this research since they are nearing completion of their studies and thus also before the decision on the choice of career. It is expected that graduate students will have enough time and energy for planning future business ventures (Audet, 2004). Wu and Wu (2008) argue that by understanding entrepreneurial intentions of university students it is possible to better predict their future real decision on launching a new business venture.

 The questionnaire was completed by a total of 453 students, 428 of which were used in the analysis.

Components of Sampling Designs

- Sampling (Random; Other probability sampling or nonprobability – such as convenience, purposive, or snowball)
- Groups one group; two, or multiple group comparisons
- Time intervals pre and post tests or multiple observations

What is an appropriate sample size

- ????
- There is no universal answer! ☺
- It depends on:
 - Research objective
 - The nature of target population
 - Statistics methods
 - Number of variables

Why do we worry about Sample Size and Power?

- Sample size too big
 - too much power wastes money and resources on extra subjects without improving statistical results
- Sample size too small
 - having too little power to detect meaningful differences
 - exposure (treatment) discarded as not important when in fact it is useful
- Improving your research design

Binomial, Lage N. 110: P=.50 P=,60 n=100 . Ha: p7.50 58 - .60 X:=001. ,40 Xit X21 .. + Xn P= XF 3446 SE(P) - JP(1-P) -14 15 Prob. Type IIS may N=100 SE(p)=.05 distunder 5823-,70 .0094 Ho:p=.SU -7.354 on 2 scol 11.6452 0 Purb. Type I Error ,70 .46 .95 .50 .55. 1.60 -23554 0 2 100 91 56+ 1.645(.05)= 5823

Inferential statistics

The intention of statistics

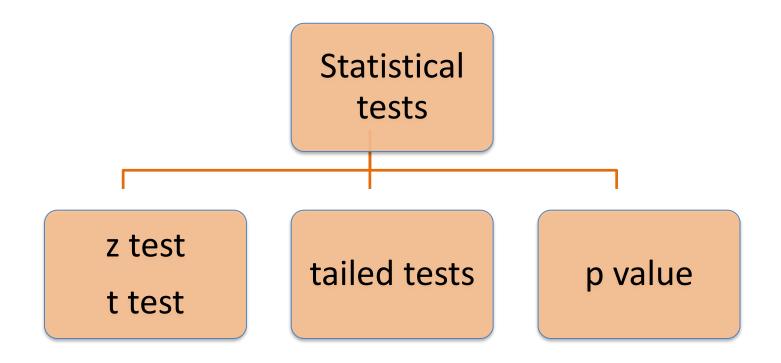
- The intention of the statistical analysis is to answer two questions:
 - Is there a significant relationship/difference/influence between the variables (do we reject the null hypothesis?)
 - If there is connection/difference/impact how big it is?

Hypotheses

- The null hypothesis (H₀) is the claim of the population parameter
- H₀ it is assumed that there is no statistically significant difference (change) between the actual value of the population parameter and claimed values
- The null hypothesis is the one that is being tested and the most common objective of testing its rejection

H₀ –the claim of the parameter

H₁ – alternative hypothesis (claim opposite of H₀) The null hypothesis can be:


30 20

77

Reject H₀
Do not reject H₀

Statistical tests

Figure: Statistical test for testing null hypothesis

35

-1

What is the goal of hypothesis testing?

35

17

- ???
- To reject H0

Criteria for rejecting a null hypothesis

- Level of Significance (Alpha Level)
 - Traditional levels are .05 or .01
- Region of distribution of sample means defined by alpha level is known as the "critical region"
- No hypothesis is ever "proven"; we just fail to reject null
- When the null is retained, alternatives are also retained.

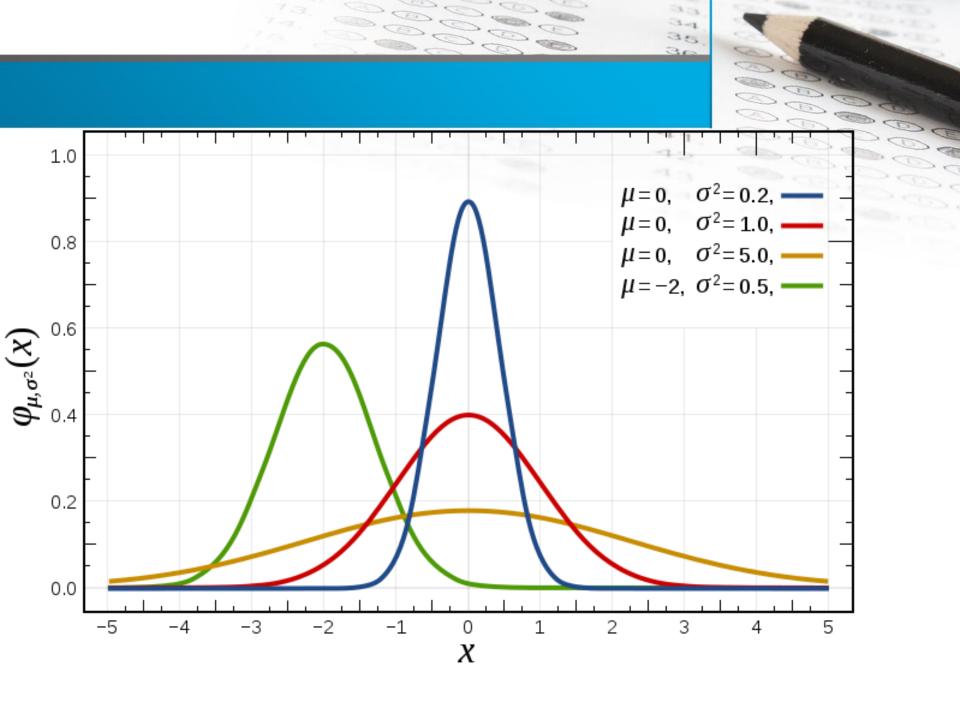
Possible decisions (errors)

• In the process of testing - four decisions

Table: Likelihood of correct and incorrect decisions for H₀

	H _o correct	H ₀ incorrect
reject H ₀	Type I error The probability of making error α Type I error = α	Right decision (1-β) (Power of the test)
fail to reject H _o	Right decision (1 – α)	Type II error The probability of making error Type II error = β

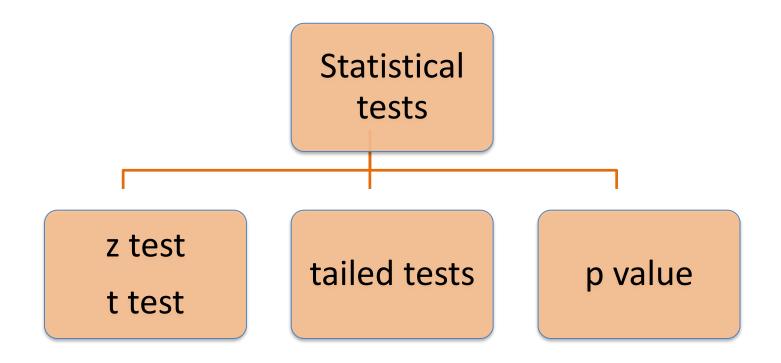
α and β Levels


- Usually range from 0.01-.10 (α) and from 0.05-.20 (β)
- Convention α =0.05 and β =0.20
- Use low alpha's to avoid false positives
- Use low beta's to avoid false negatives
- Increased sample size will reduce type I and type II errors

Statistical Power (1- β)

- How sensitive is a test to detecting real effects?
- A powerful test decreases the chances of making a Type II Error
- Ways of Increasing Power:
 - Increase sample size
 - Make alpha level less conservative
 - Use one-tailed versus a two-tailed test
- If β =.20 then power =.80

Normality of distribution


- The central limit theorem
 - Each distribution will be approximately normally distributed
 - If the sample is greater than 30 units
 - And the small sample size (n) if the sample selected from the population that depends on the normal distribution

What Do we mean by the term "Statistical Significance?"

Statistical tests

Figure: Statistical test for testing null hypothesis

35

-1

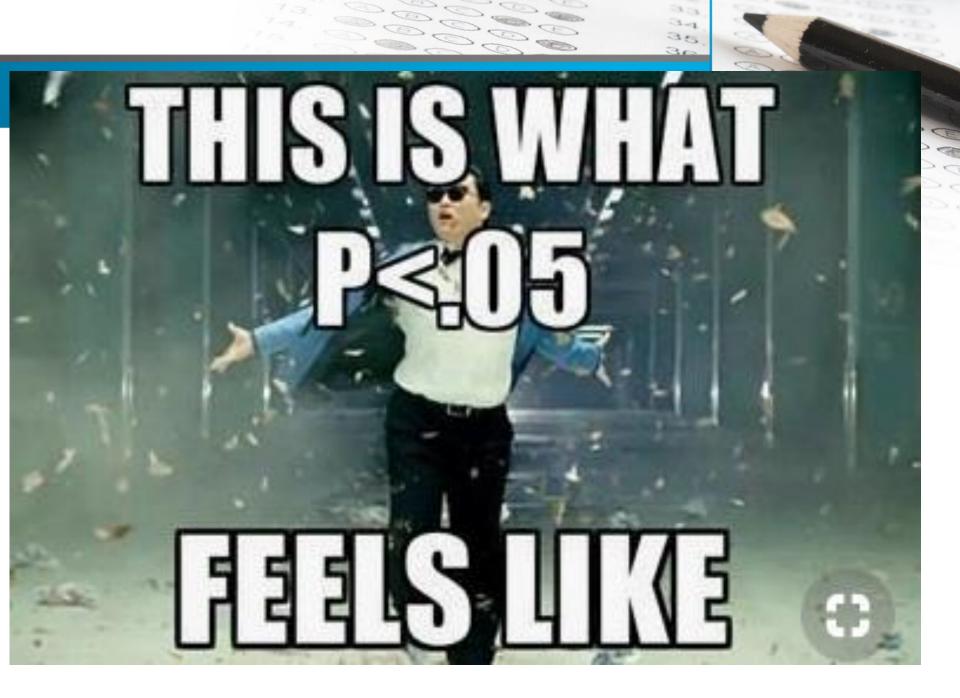
P-values

A measure of a Type I error (random error)
 – Our very important error ^(C)

35

 If p=0.05, there is just a 5% chance that an observed association in your sample is due to random error

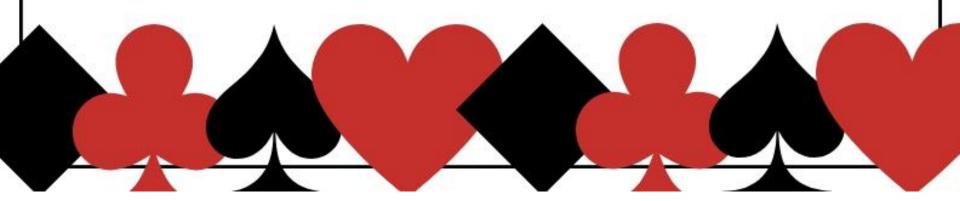
Using the P-Value

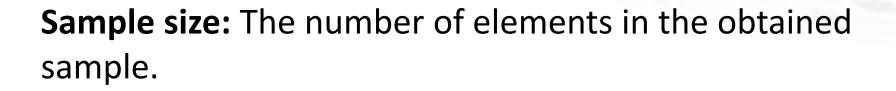

- Reject if $H_o \quad p-value \le \alpha$
- Fail to Reject if

 $H_o \quad p-value > \alpha$

33

77


• The smaller the *P*-value, the stronger the evidence against *H*_{0.}


p < 0.05 statistically p significant difference</pre>

p > 0.05 no statistically significant difference

VALUE

Sample size

Factors that decide about the sample size:

- 1. The confidence you need in data.
- 2. The margin of error that you can tolerate.
- 3. The type of analysis that you are going to undertake.
- 4. The size of total population.

Sample size

- General rule as large as possible to increase the representativeness of the sample
- Increased size decreases sampling error
- As the number of variables studied increases, the sample size also needs to increase in order to detect significant relationships or differences

Why do we worry about Sample Size and Power?

- Sample size too big
 - too much power wastes money and resources on extra subjects without improving statistical results
- Sample size too small
 - having too little power to detect meaningful differences
 - exposure (treatment) discarded as not important when in fact it is useful
- Improving your research design

Optimal / Ideal Sample SIZE!!!!

• <u>Sample size table</u>

00000

000

0000

23.23

3-1 35 36

-1-1

-1-2

Car

(D) (D)

500

0000

000000 00000 000000

Sample Size and Power Software

- Epilnfo
 - Programs → Statcalc → Sample size and Power
 - User-friendly; easily accessible
- PASS, Power and Precision
- G*power
 - Free
 - Calculating sample size
 - Calculating statistical power

βa	G*P	ower	3.1	1.9.2	
----	-----	------	-----	-------	--

File Edit View Tests Calculator Help

Central and noncentral distributions Protocol of power analyses

G*power3

• Some examples

Test family t tests ~		oint biserial mod	el	
Type of power ana		la ciza divana v	and offect size	
A priori. Compute	e requireu sampi	ie size – given a, j	oower, and effect size	
Input Parameters			Output Parameters	
	Tail(s)	One 🗸	Noncentrality parameter δ	
Determine =>	Effect size p	0.3	Critical t	
	α err prob	0.05	Df	
Powe	r (1-β err prob)	0.95	Total sample size	
			Actual power	
			X-Y plot for a range of values	Calculate

Before calculating

- Understand which statistical method you plan to use
- Do you know the number of predictive variables?

G* Power

• Correlations & regressions (univariate, multiple variate, logistic)

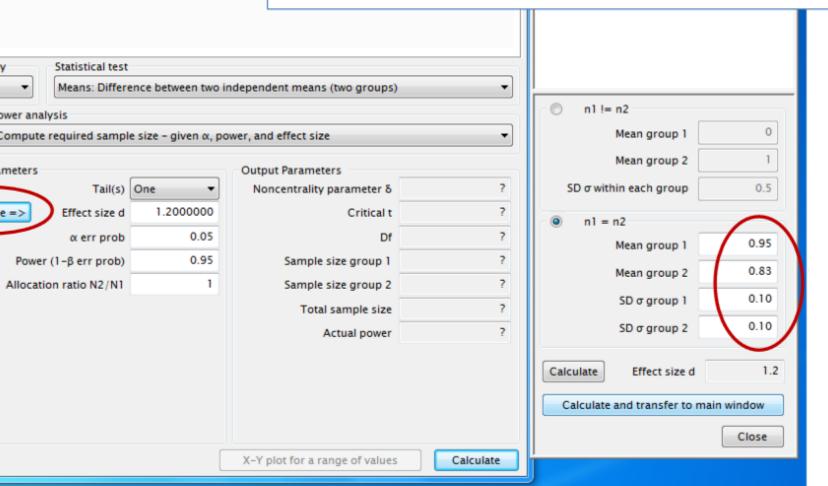
35

77

-1-2

- Means (one, two, many groups, un/paired, non-parametric)
- Proportions (one, two groups, un/paired)
- Variances (one, two groups)

βα G*Power 3.1.3		
File Edit View T	sts Calculator Help	
Central and noncen	ral distributions Protocol of power analyses	
	1. Select the statistical test	
	I. Select the statistical test	
Test family	Statistical test	
t tests 🔻	Correlation: Point biserial model	
Type of power anal	Correlation: Point biserial model	
	Linear bivariate regression: One group, size of slope Linear bivariate regression: Two groups, difference between intercepts	
A priori. Compute	Linear bivariate regression: Two groups, difference between slopes	
Input Parameters	Linear multiple regression: Fixed model, single regression coefficient	
	Means: Difference between two dependent means (matched pairs) Means: Difference between two independent means (two groups)	
Determine =>	Means: Difference from constant (one sample case)	
	Means: Wilcoxon signed-rank test (matched pairs)	
	Means: Wilcoxon signed-rank test (one sample case)	
Power	Means: Wilcoxon-Mann-Whitney test (two groups) • Generic t test	
	Actual power ?	


wer 3.1.3	
dit View Tests Calculator	Help
al and noncentral distributions	Protocol of power analyses

2. Select the type of power analys

mily Statistica	il test							
▼ Means: [Means: Difference between two independent means (two groups)							
f power analysis								
ri: Compute required s	ample size - g	given α, power,	and effect siz	ze		-		
ri: Compute required s romise: Compute impl on: Compute required oc: Compute achieved vity: Compute required	ied α & power α - given pow power - given	r – given β/α ra ver, effect size, αα, sample size	tio, sample si and sample si e, and effect si	ze, and effect s ize ize	ize			
αerr	prob	0.05		Df	7	?		
		0.05	- · ·		-			

3.1.3		
View Tests Calculator	Help	
d noncentral distributions	Protocol of power analyses	

3. Input the data characteristics to determine the effect size

4. Input power parameters

Statistical test						
▼ Means: Differen	nce between two inc	dependent means (two groups)	•			
r analysis						
pute required sample	e size – given α, pow	er, and effect size	•	Mean group 1	0	
ters	\frown	Output Parameters		Mean group 2	1	
Tail(s)	Two 🔻	Noncentrality parameter δ	?	SD σ within each group	0.5	
> Effect size	1.2000000	Critical t	?	n1 = n2		
α err prob	0.05	Df	?	Mean group 1	0.95	
Power (1-β err prob	0.90	Sample size group 1	?		0.83	
ocation ratio N2/N1	1	Sample size group 2	?	Mean group 2		
	\smile	Total sample size	?	SD σ group 1	0.10	
		Actual power	?	SD σ group 2	0.10	
				Calculate Effect size d	1.2	
				Calculate and transfer to ma	ain window	
					Close	
		X-Y plot for a range of values	Calculate		close	

t-test

G G Power 3.	1.7			
File Edit View	Tests Calculator H	telp		
Central and no	Correlation and rea Means Proportions Variances Generic	gression + I of po	wer analyses	
Test family t tests		Point biserial mode		~
A priori: Com	pute required sampl	e size - given α, po	wer, and effect size	~
Input Paramet	ers		Output Parameters	
	Tail(s)	One 🔽	Noncentrality parameter δ	?
Determine =>	Effect size p	0.3	Critical t	?
	α err prob	0.05	Df	?
P	ower (1-β err prob)	0.95	Total sample size	?
			Actual power	?

Calculate

File Edit View	1.7					
	Tests Calculator H	lelp	_			
Central and no	Correlation and re	gression 🔸	lofno	ver analyces		
	Means	•	One	group: Difference from constant		
	Proportions	•	One	group: Wilcoxon (non-parametric)		
	Variances	•		dependent groups (matched pairs)		
	Generic	•		dependent groups (matched pairs):	Wilcoxon (non-parametric))
				independent groups		
			Two	independent groups: Wilcoxon (non-	parametric)	
				/ groups: ANCOVA: Main effects and		
				/ groups: ANOVA: One-way (one ind		
			Many	/ groups: ANOVA: Main effects and i	nteractions (two or more i	ndependent v
				ated measures: Between factors, A		
				ated measures: Between factors, M		
				ated measures: Within factors, ANC		
,				ated measures: Within factors, MAN		_L
Test family	Statistical test			ated measures: Within-between inte ated measures: Within-between inte		
t tests	 Correlation: F 	oint biseri:	Кере	ateu measures; within-between into	sracuons, manova-appro	aun
Type of power	anahisis			variate: Hotelling T², one group		
		::.		variate: Hotelling T², two groups		
A priori. Com	pute required sampl	e size - giv		variate: MANOVA: Global effects		
Input Paramet	ers		Multi	variate: MANOVA: Special effects an Output Parameters	id interactions	
input a antes	Tail(s)	One	~	Noncentrality parameter δ	?	
Determine =>	7		0.3	Critical t	?	
Determine ->	Effect size p		0.0	Chicart	· · ·	
	α err prob		0.05	Df	?	
P	ower (1-β err prob)		0.95	Total sample size	?	

t-test

	B G*Power 3.1	.7					
	File Edit View	Tests Calculator H	-				
	Central and no	Correlation and re	gression 🕨	lofno	wer analycec		
		Means	•	One	group: Difference from constant		
t-test		Proportions	•	One	group: Wilcoxon (non-parametric)		
l-lest		Variances	•	Two	dependent groups (matched pairs)		
		Generic	•	Two	dependent groups (matched pairs): '	Wilcoxon (non-parametric))
				Two	independent groups		
				Two	independent groups: Wilcoxon (non-	parametric)	
				Many	/ groups: ANCOVA: Main effects and	interactions	
				Many	/ groups: ANOVA: One-way (one ind	ependent variable)	
			-	Many	/ groups: ANOVA: Main effects and ir	nteractions (two or more i	ndependent variables)
					ated measures: Between factors, Al		
					ated measures: Between factors, M		
					ated measures: Within factors, ANO		
					ated measures: Within factors, MAN		
	Test family	Statistical test			ated measures: Within-between inte		
	t tests 🗸 🗸	Means: Differ	ence from	Repe	ated measures: Within-between inte	eractions, MANOVA-appro-	ach
	Type of power a	mahisis			variate: Hotelling T², one group		
					variate: Hotelling T², two groups		
	A priori: Comp	ute required sampl	e size – giv		variate: MANOVA: Global effects		
	-Input Parameter			Multi	variate: MANOVA: Special effects an Output Parameters	d interactions	_
	input Parameter	Tail(s)	One	~	Noncentrality parameter δ	?	
	Determine =>	Effect size d		0.5	Critical t	?	
		, α err prob		0.05	Df	?	
	Po	wer (1-β err prob)		0.95	Total sample size	?	
					Actual power	?	
					X-Y plot for a range of values	Calculate	

	atistical test			41, S	000000
Type of power analysis A priori: Compute req	;		it (one sample case) ower, and effect size	✓	
Input Parameters			Output Parameters		
	Tail(s)	One 🔽	Noncentrality parameter δ	?	
Determine => E	Effect size d	One Two	Critical t	?	
	α err prob	0.05	Df	?	
Power (1-	β err prob)	0.95	Total sample size	?	
			Actual power	?	
			X-Y plot for a range of values	Calculate	

000000

0000

000

23.23

3-1

35.

36

5000

A REAL PROPERTY AND A REAL PROPERTY A REAL PRO

000

1000 × 10.0

			41.00	
CTest family CStatistical test				1 2
t tests 🗸 Means: Difference	from constant	(one sample case)	*	
Type of power analysis				J in the
			~	
A prior d = .20 - small	³ given α, po	wer, and effect size	· · · · · · · · · · · · · · · · · · ·	
cinput P d = .50 - medium		Output Parameters		
d = .80 - large	~	Noncentrality parameter δ	?	
Determine => Effect size d	0.5	Critical t	?	
α err prob	0.05	Df	?	
Power (1-β err prob)	0.95	Total sample size	?	
		Actual power	?	

000000

0000

000

23.23

3-1

35.

36

SON

000000 00000

A REAL PROPERTY AND A REAL PROPERTY A REAL PRO

1000 × 12 ×

		42		00
Test family	Statistical test			
t tests 🛛 👻	Means: Difference from constant (one sample case)		~	
Type of power ana	lysis			
A priori: Compute	required sample size - given α , power, and effect size		*	

CONTRACTOR AND A

000000

0000

000

And the second second

CO < 100

23.23

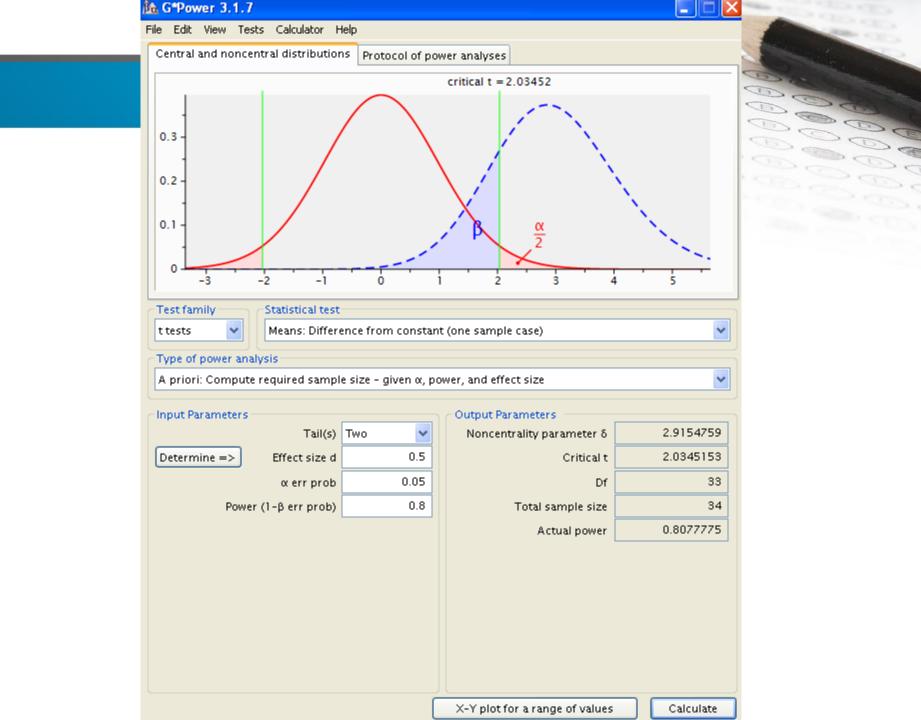
3-1

35.

41

36

s con


CO CO CO

000 000000 00000 000000

And the second second second second

ALC: N ALC: N

Input Parameters		Output Parameters	
Tail(s)	One 🔽	Noncentrality parameter δ	?
Determine => Effect size d	0.5	Critical t	?
α err prob	0.05	Df	?
Power (1-β err prob)	0.8	Total sample size	?
		Actual power	?

ANOVA

i	🏡 G*Power 3.1.7						
	File Edit View Tests Calculator Help						
	Central and no Means Proportions Variances Generic	 One g One g Two d 	roup: Difference from constant roup: Wilcoxon (non-parametric) ependent groups (matched pairs) ependent groups (matched pairs): ¹	Wilcoxon (non-parametric)			
	0.3 -		idependent groups idependent groups: Wilcoxon (non-	parametric)			
	0.2 -	· · ·	Many groups: ANCOVA: Main effects and interactions				
			groups: ANOVA: One-way (one ind groups: ANOVA: Main effects and in		idependent variables)		
	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1						
	Type of power analysis Multivariate: Hotelling T², one group A priori: Compute required sample size - giv Multivariate: Hotelling T², two groups Multivariate: MANOVA: Global effects Multivariate: MANOVA: Special effects and interactions						
	Input Parameters Tail(s) Two	o 🖌	Output Parameters Noncentrality parameter δ	2.9154759			
	Determine => Effect size d	0.5	Critical t	2.0345153			
l	α err prob	0.05	Df	33			
l	Power (1-β err prob)	0.8	Total sample size	34			
	Actual power 0.8077775						
			X-Y plot for a range of values	Calculate			

			41.
Test family F tests Type of power analysis	t d effects, omnibus	, one-way	~
A priori: Compute required samp	le size – given α, p	ower, and effect size	*
Determine => Effect size f	0.25	Noncentrality parameter λ	?
α err prob		Critical F	?
Power (1-β err prob)		Numerator df	?
Number of groups	5	Denominator df Total sample size	?
		Actual power	?

23.23

3-1

35.

SON

A REAL PROPERTY AND A REAL PROPERTY.

All and a second second

			1 2 2 2 2
F tests	effects, omnibus,	one-way	~
Type of po A priori: (f = .10 - small f = .25 - medium		wer, and effect size	~
f = .40 - large	0.25	Output Parameters Noncentrality parameter λ	?
α err prob	0.05	Critical F	?
Power (1-β err prob) Number of groups	0.95	Numerator df Denominator df	?
		Total sample size Actual power	?

000000

0000

000

23.23

3-1

35.

36

SON

A REAL PROPERTY AND A REAL

000 O O O O C 00000

1000 × 1100

Measuring Effect Size

- Statistical significance alone does not imply a substantial effect; just one larger than chance
- Cohen's d is the most common technique for assessing effect size
- Cohen's *d* = Difference between the means divided by the population standard deviation.
- d > .8 means a large effect!

Cohen's recommendations

Effect	d	r
Small	≥0.2	≥0.1
Medium	≥0.5	≥0.3
Large	≥0.8	≥0.5

Sample

 Qualitative research: The sample that was covered by in-depth interviews consisted of five participants (group of students that have pursued self-employment 10 years ago under mentoring guidance of a university professor from the Faculty of Economics in Osijek – development team of the CATI project).

Sample

- Quantitative research: University students of economics were selected for the sample since student sample is very common in testing of self-employment intentions. Students of the graduate study are the target group of this research since they are nearing completion of their studies and thus also before the decision on the choice of career. It is expected that graduate students will have enough time and energy for planning future business ventures (Audet, 2004). Wu and Wu (2008) argue that by understanding entrepreneurial intentions of university students it is possible to better predict their future real decision on launching a new business venture.
- The questionnaire was completed by a total of 453 students, 428 of which were used in the analysis.